Viewing of Immersive Video on Extended Reality
Platforms

Nicholas Wells
Department of Computer Science

Aatman Rangrej
Department of Computer Science

Amilcar Soares
Department of Computer Science

Memorial University of Newfoundland — Memorial University of Newfoundland — Memorial University of Newfoundland

St. John’s, Canada
nwwells@mun.ca

Matthew Hamilton
Department of Computer Science
Memorial University of Newfoundland
St. John’s, Canada
mhamilton @mun.ca

Abstract—Given the current broad availability of immersive
head-mounted displays (HMDs), such as those for virtual and
augmented reality (AR/VR) and stand-alone 3D displays, immer-
sive cinema becomes both possible and compelling. In this paper,
we present a system to allow the display of immersive video within
an extended reality (XR) environment. This system allows for the
targeting of immersive video onto various AR/VR/XR platforms;
Accomplished by integrating a previously-developed real-time
light field rendering system based on hardware-accelerated ray
tracing using NVIDIA’s Optix API with the OpenXR standard’s
APIL. The result is an ability to render real-time views of
immersive videos and interactively simulate light field displays,
all within various AR/VR/XR systems. We demonstrate using
the Meta Quest 2 VR headset. Future work includes developing
compression schemes for light field video to support longer, high-
quality, and streaming video at interactive rates.

Index Terms—VR/AR, Light Field, Immersive Video

I. INTRODUCTION

With the evolution of immersive displays, a new paradigm
for media content has emerged. This new paradigm has created
a new challenge: How to effectively create, store, and view
immersive content in fast and efficient methods that allow
scaling to a visual quality that cannot be distinguished from the
real world? These requirements raise other questions, such as:
What is the required quality of such content, and how can we
evaluate different resolution configuration? In order to answer
these questions we need to develop testing procedures which
can simulate this immersive media on the displays they will
be seen on.

These immersive displays include virtual reality (VR), aug-
mented reality (AR) headsets, and holographic displays and
can offer the ability for a viewer to be active in the video
experience. A viewer is no longer required to view from a
single camera point during a video, but instead any view
they may desire using such displays. As a result, video for
immersive displays now requires managing all the possible
views of a viewer to be stored before it can be used.

St. John’s, Canada
aurangrej @mun.ca

St. John’s, Canada
amilcarsj@mun.ca

The requirement for these new views to be stored when
making videos now requires a new video format to be used.
An immersive video format requires the ability to store all
these new views in new ways that can be both created and
view these videos with new software that can interact with
current video creation tools.

In this work, we continue our previous work [1] on develop-
ing a light field simulator as a solution for viewing immersive
videos within VR in real-time. Within that work, we created
a light fields simulation software, which used light fields as a
means to store immersive images created as light fields using
commercial animation software (OctaneRender). These images
were then rendered relative to single camera viewing using a
our software’s ray-tracing based rendering engine.

The work presented in this paper expands upon this original
work, to now include the ability to generate and view light field
videos instead of just single frames and include the ability to
now view these immersive videos within an extended reality
environment using the OpenXR API. This work can be found
at https://github.com/hamiltonmj/LF-Render

The main contributions of this work are:

e We show a simple pipeline to generating light field
videos and displaying them within a pure ray-traced
environment.

o We present the limitation of storing immersive video in
light field frames directly when attempting to render using
conventional rendering techniques.

« We provide a baseline cross-platform program for view-
ing immersive media on multiple immersive technologies
for design testing of both scenes and light field designs.

II. BACKGROUND

A. Immersive Media

Immersive media is a general term to describe media content
used within technologies designed to adapt to a viewer’s
interactions with the system. Many different technologies can

fit into this general term, two in particular are essential to
this paper: virtual reality/augmented reality (VR/AR) headsets
and holographic displays. Each provides an immersive viewing
experience by providing users with more interactions than
standard 2D displays. In VR/AR displays, this includes the
ability for the headsets to track head movements and adapt the
displayed view around the moving head, and in holographic
displays, multiple views are displayed at once to a viewer
in which they can see a correct version of a scene based on
where their head positions are from the display. More specific
information about immersive media types can be found in [2].

B. Light Fields

Light fields are a term used to describe all the waves of
light that intersect a volume of space. By quantifying the
number of waves intersecting the volume and its shape, we can
describe how to capture light. Conventional cameras quantify
these parameters to capture a single view of the scene. While
capturing immersive media, this restriction of a single view
is no longer the goal. Displays that attempt to use light fields
for immersive media redefine the volume and rays collected
to capture multiple views. This approach is well described
in many papers, and an initial introduction to the topic was
provided by Levoy and Hanrahan [3]. Other ways to capture
immersive media can be found in [4] and include multi-
Camera Arrays, volumetric capture, etc.

III. RELATED WORK

The concept of creating immersive videos has been explored
in other works. One approach to address this problem is
by computing the view of a scene in real-time. This is
accomplished using mathematical formulations of how light
would respond within the real world to a computer-modeled
scene, this approach can be better understood in [5]. One work
that attempts to follow the real-time rendering principle is
[6]. These processes, however, require increased computational
power and rendering time the closer to reality it attempts to get
Eventually to a point where creating a real-world equivalent
becomes impossible in real-time.

As a result, other methods for rendering immersive scenes
have been suggested; the method introduced by Broxton et
al. [7] suggests using a layered Mesh to represent the scene,
allowing a viewer bounded within a sphere to view an im-
mersive video in real-time. This approach limits the viewer
to within the boundaries of a sphere, so the ability to scale
this method to larger and more general immersive scenes fails.
Another problem with this method is the ability of this method
to represent depth within an immersive video. The depth being
represented is impacted by the number of layered meshes used.
As a result, replicating depth found in the real world would
produce many meshes, eventually impacting performance.

Another area focusing on displaying immersive videos is
simulators designed to replicate the views a real person would
view digitally. One such work focused on this is [8]. This
simulator does not use a pure ray-traced-based approach
to simulate an immersive scene and, as a result, produces

|

--___._._._._._._.
- F

——

Left: light field Animation frames, Right: Conventional animation

Fig. 1.
Frames

inaccurate simulations of how singular light waves interact
within the environment.

This work advances the literature on the visualization
of immersive videos by providing a complete open-source
pipeline for both the production and testing of computer
generated, light field based, immersive media. Which Can be
specifically tailored for different immersive display technolo-
gies, opening up the ability to for the design and testing of
many configurations for future research. Unlike the approaches
previously discussed, our approach can be used within current
media pipelines to generate immersive videos in unbounded
environments and also provide ray traced paths to simulate
how light actually travels in the real world. As a result of
this our work can also be used for testing many different
configurations of immersive media designs in with the ability
of offering a standard testing environment.

IV. GENERATING LIGHT FIELD VIDEO
A. Rendering

The first step in accomplishing our goals was the creation
of a dataset to test on. This dataset would contain a light
field video which we have rendered. This rendering was done
so by modifying our original work’s rendering system. This
modification included the ability to now capture multiple light
field video frames from a scene, instead of the original single
light field captured. This modification was accomplished using
Maya, a commercially available rendering software with otoys
Octane render plugin. The adoption of this software allowed us
to add our custom OSL camera shader, which could capture a
light field. To then capture a light field video, we would apply
a similar format to animation for standard 2d video, involving
setting up the objects of the scene at each animation frame, see
figure 1 for a comparison between 2D video and Light Field
Video. The only modification we apply to the animation is
replacing the regular-use camera with our custom OSL camera.
This allows us to capture a light field in the animation frame.
We would then just render each frame like done with standard
2d animation at each time frame, now using our OSL camera.

B. Storage

With our new rendering system for creating light fields, we
now discuss how we store these light field videos within our
system. Within our simple testing, we keep each frame stored
as a simple PNG file that has been labeled relative to the

animation frame it represents lightField_AnimationFrame.png.
With more complex video, compression of such images would
be necessary, and standard video compression schemes could
be applied such as HEVC [9].

C. Limitations

With the design of our rendering system, the ability to
generate light field videos at any size and scale is possible.
Our work does not impose restrictions on the light fields being
generated and as such, they can scale to any size application
and video length desired by the user. The rendering time
although will become an impeding problem as light field
quality increases. This can be shown with the simple demo
scenes rendered for this paper. The rendering time of these
demos took approximately 14 hours, with simple geometry and
reflection. When scaled to more complex scenes with increased
quality and size of the video, this rendering time will increase.

It is worth noting that the rendering times for these demos
do not represent a minimum rendering time for a scene of that
size, the complexity of the scene and rendering parameters set
before rendering hold a great amount of power in increas-
ing/decreasing the performance of the system. But in order to
render light field videos at the same quality as 2D rendering
the size and quality of the light field video will greatly increase
the rendering time required.

V. REAL-TIME LIGHT FIELD VIDEO VIEWER
A. Basics

Our light field video viewer is an extension of our previously
created light field viewer. This previous software created a
light field viewing simulator using NVIDIA’s Optix API. This
application creates a plane in which we can display a light
field onto, in which a single camera can move around and the
resulting view from the camera is taken as a viewer looking
at the light field at that location. Example views from this
camera can be seen in figure 2. This system can accept light
fields with any parameters although hardware constraints can
limit this, and the viewing camera can be modified based on
viewing requirements. This simulator is also able to render 2D
images, as well.

The new work done with our simulator is the ability to
load entire light field videos into the simulator and display
them. This is accomplished by loading all light field frames
of the video into the system RAM as individual light fields,
during the start up of the program. We then move all these
frames into the graphics card memory (VRAM) and launch the
application. Once launched we now track the running time
of the application so we change the displayed light field to
represent the currently required animation frame based on the
running time of our simulator. Once the video animation has
been completed our light field simulator will loop over the
video. The ability to also view conventional 2D video is also
present within this new design.

The ability to change the viewed video during run-time is
also available and the same process as at start up will occur,

Fig. 2. Rendered Views of Light field by moving Camera around. Scene
rendered with OTOY OctaneRender software.

first loading the video into ram then to VRAM and then the
program will continue to run.

B. Memory Requirements

The largest constraint to our current light field viewer is that
of both the RAM and VRAM required to store a light field
video. The need for it to be in VRAM although is a higher
concern compared with the system ram, as the cost of VRAM
is much higher. As a result, we are constrained to making light
field videos that will fit entirely within a system’s VRAM.

This is an ever-present challenge within our work as the size
of even a single light field frame of high quality and viewing
angle, which could compare with standard HD resolutions,
would still be far too large to fit in any consumer-grade
hardware. A naive equation for determining the number of
pixels for a specific light field is:

LFSize = My % My * Ny x N,
(1

where M,,M, represent the spatial resolution of a single
view (spatial resolution) and N,,N, represent the number of
views in each direction (Angular resolution). The equation
for standard 2D video can be derived from this equation by
applying that N, and N, = 1 as a result it is clear that any
light field frame will be N, x N, larger than a standard 2D
video. This problem then extends when we want to include
enough frames for an entire video. The equation for video
becomes:

LFVideoSize = LF Size x fpsx L 2)

Where L is the length of the video in seconds, and fps is
the frame rate of the video per second. By applying these
equations to a concrete example we can quickly discover the
physical problem of rendering light field videos, compared
with rendering 2D video. We will take a 30-second video with
a frame rate of 60 would with a standard HD quality for our
example. For a none light field display would be:

= (1920 % 1080 x 1 * 1) * 60 * 30 = 3.7 billion pizels (3)

Fig. 3. Left and Right eye view in VR

Compared with using a light field with both NV, and N, = 60
(This does not represent high Angular resolution):

= (1920% 1080+ 60*60) *60%30 = 13.4 trillion pixzels (4)

As can then be seen a light field video requires orders of
magnitude more space than a conventional 2D display and we
cannot replicate light fields at any scale or quality to compare.
So within our current design, there is a quality ceiling that we
will hit when attempting to store a light field video that is
larger than the VRAM of the system.

C. Basic Operation

In order to run our system, you simply need to provide the
program with a light field and the specific parameters required
to view it correctly: N, Ny, FFOV (field of view) and the
location of the PNG image storing the light field. To view a
video the same parameters will need to be provided, except
instead of providing a PNG light field image, you will pass
the location of the folder containing the labeled PNG video
frames, and also provide the fr (frame rate) of the video.

VI. ADAPTING TO HMD-VR

The need for VR adaptation comes from the immersive
experience Head Mounted Display (HMD) can provide by
enabling the viewer to perceive the depth found within the
light field. To adapt to VR, you need to use stereoscopic
rendering. This type of rendering involves rendering the same
scene twice. In VR these two renderings represent the left
and right eye of a human. In applications, you position each
camera to mimic the position of the left and right eye, to now
capture the same perception as a human can, this effect then
also creates the perception of depth.

We extended our previous work, to enable such Stereoscopic
rendering, with the use of the OpenXR API. This API provides
a standard system for integration with immersive display
devices, allowing accessibility across different VR devices,
without needing external device-specific knowledge. This then
enables our system to be cross-platform enabled to any range
of immersive display devices, which support the OpenXR
standard.

Our new system accomplishes this stereoscopic rendering
with the OpenXR standard, a simple modification to our

| Format | Video | Single Frame |
FPS 886.9 888.6
State Update Time | 0.0 ms 0.0 ms
Render Time 0.4 ms 0.4 ms
Display Time 0.6 ms 0.6 ms
TABLE I

RENDERING PERFORMANCE OF VIDEO AND SINGLE FRAME

previous work’s view generation process. In our previous
work, a single view was generated by taking the camera
position and direction and creating a pinhole viewing camera
from it, in this new work we simply now create 2 of these
cameras, using the positions and orientations provided by
OpenXR, (fig 3) shows the generate views from these new
cameras.

VII. RESULTS
A. Testing Parameters

All results were found using a computer with an NVIDIA
RTX 3090 GPU using simple test scenes, not created to fa-
cilitate hyper-realistic scenes or with consideration to specific
depth design, based on the memory constraints of our system
discussed above. To further reduce the impact of the memory
constraint discussed above, videos have been rendered with
horizontal parallax only (where N, = 1) to again reduce the
light field sizes for rendering. The test Videos used had a
length of 7 seconds with 30 FPS. The parameters of the light
fields for each frame contained a total resolution of (15360 X
512) pixels, with a 30° FOV.

B. Conventional 2D Displays

In our extention from the previous work we also keep some
features useful for testing, this includes the ability to produce
a view within the simulator which can be seen on a 2D
conventional display. With the new complexity of working
with video added, we have run tests to confirm the perfor-
mance of our new additions have not impacted the running
time of the simulator compared with its previous iteration.
This test was accomplished by rendering a single frame light
field and then a video and comparing their results, table I
shows the comparison while running the simulator under both
versions. Further results for single frames can be found in
our previous work, although when rendering videos, the size
of the video impacts the available resolution of the light field
being displayed, so comparisons between each version use the
lower-quality Light fields required for video.

C. Meta Quest 2

When integrating our system within VR, we began our
testing using a Meta Quest 2 VR headset and concluded
several results from this initial testing. The biggest conclusion
drawn was that we could detect depth within the headset not
perceived when viewing our simulator on a 2D display. Fig
4 locates the specific area in which depth was found. The

Fig. 4. Location of perceived depth

ability to see the spout of the teapot as a 3d object within
the 2D plane proves the ability of our new method to deliver
immersive views which cannot be perceived on a 2D display.
This depth although was only perceived when working in a
static image, when testing on video this depth effect was not
present.

We pose several reasons why this may be the case, first,
the low resolution required by the video requires us to lower
the resolution of the light field, to such a resolution that depth
cannot be detected, this problem has been explained in other
works such as [10]. Another possible conclusion is the quality
of the video scene used for demonstration may not facilitate
the discovery of depth, when viewing our test videos, only
contained 7 seconds of video in which a square moved around
a room, this simplicity may have resulted in an inability for
our testing to show a desirable depth.

D. Limitations

The results discussed for each hardware device show that
we can display an immersive video on multiple immersive
displays with simple effort, but this limited testing of devices
prevents a general statement about the cross-platform usage of
our software for displaying immersive video. Also, the light
fields created for testing may not have differences based on
the viewing environment independent from our software itself.

VIII. CONCLUSION

Within this work, we have shown a simple and adaptable
framework that generates immersive video using light fields,
which can be displayed in real-time to immersive display
devices. We have shown how this process can create these
immersive videos within modern commercial animation soft-
ware using an OSL-Camera and can be adapted to various
hardware specifications with ease. We also show how to
then display these immersive videos using our own viewing
software created with NVIDIA OPTIX’s ray-tracing API and
the OpenXR API standard. We then describe how our viewing
software runs within actual hardware devices in real time.

IX. FUTURE WORK

This current work shows how we can generate and render
small light field videos and display them both in simulation
and in VR, the next step is to further increase the quality of
the generated light fields by investigating better approaches
to rendering and storing them to remove the large storage
burden for even the small and simple demonstration videos
we used within this paper. By applying more sophisticated
approaches to storage, we will enable the ability to create light
field movies at the cinematic scale, and quality and offer new
experiences to viewers never experienced before.

REFERENCES

[1] N. Wells and M. Hamilton, “Towards Immersive Cinematic Video for
Immersive Displays,” in The 30th Annual Newfoundland Electrical and
Computer Engineering Conference, St.Johns’s, Canada, 2021, pp. 0—4.

[2] M. Domanski, O. Stankiewicz, K. Wegner, and T. Grajek, “Immersive
visual media - MPEG-I: 360 video, virtual navigation and beyond,” in
International Conference on Systems, Signals, and Image Processing.
IEEE Computer Society, jun 2017.

[3] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings

of the 23rd annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’96. New York, New
York, USA: ACM Press, 1996, pp. 31-42. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=237170.237199

[4] Immersive IDEA Live Action Working Group Report, “Photographic
Live Action Capture for Immersive Media,” Digital Experiences Al-
liance, Tech. Rep., 2021.

[5] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Render-
ing:From Theory To Implementation, 2018.

[6] P. Lall, S. Borac, D. Richardson, M. Pharr, and M. Ernst, “View-
Region Optimized Image-Based Scene Simplification,” Proceedings
of the ACM on Computer Graphics and Interactive Techniques,
vol. 1, no. 2, . 1-22, aug 2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3233311

[71 M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec, “Immersive light
field video with a layered mesh representation,” ACM Transactions on
Graphics, vol. 39, no. 4, jul 2020.

[8] M. Hamilton, C. Rumbolt, T. Butyn, D. Benoit, R. Lockyer, and
M. Troke, “Light Field Display Simulator for Experience and Quality
Evaluation,” Avalon Holographics, ST. John’s, Tech. Rep., 2018.

[9] J.R.Ohm, G.J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Com-

parison of the coding efficiency of video coding standards-including high

efficiency video coding (HEVC),” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, no. 12, pp. 1669-1684, 2012.

M. Zwicker, W. Matusik, F. Durand, H. Pfister, and C. Forlines,

“Antialiasing for automultiscopic 3D displays,” ACM SIGGRAPH 2006:

Sketches, SIGGRAPH 06, 2006.

[10]

